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of 2-Furanyl- and 2-Thienylplatinum Complexes
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The treatment of 2-furanylplatinum with maleic anhydride
(MA), tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquino-
dimethane (TCNQ) results in insertion of the olefins into the C-H
bond of furanyl group at the 5-position. 2-Thienylplatinum
complex similarly reacts with TCNE and TCNQ to give the
insertion products.

Alteration of the reaction course of organic compounds by
the aid of a transition metal species is one of the most attractive
subjects in organometallic chemistry.! We report herein that the
highly reactive nature of furan toward the Diels—Alder reaction? is
effectively reduced by the linkage to platinum complexes with -
bond, leading to the insertion of olefins into the C—H bond of
furan.
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Representative examples are given in Scheme 1. Reaction
of 2-furanylplatinum chloride bearing two PMes ligands (1a)
with maleic anhydride (MA) (1 equiv.) under reflux in dichloro-
methane for 24 h formed a 1:1 adduct of the reactants (2a) in
quantitative yield as confirmed by 3P NMR analysis of the
reaction solution. Complex 2a was isolated as a yellow
crystalline solid by recrystallization from a mixture of toluene and
hexane (68%). The !H NMR spectrum exhibited three sets of
doublet of doublets at & 4.34, 3.32, and 3.14 in equal intensities,

Figure 1: Molecular structure of 2a.

assignable to the three protons of 2-oxacyclopentane-1,3-dion-4-
yl group. As to vinylic protons, only two signals were observed
at 6 6.22 and 5.80, indicating the presence of di-substituted furan
ring. The 13C NMR data were consistent with the observations
in 1H NMR.3

Further identification of 2a was carried out by X-ray
crystallography.4 As seen from the ORTEP diagram in Figure 1,
complex 2a has a 2-furanyl group substituted with 2-
oxacyclopentane-1,3-dion-4-yl moiety at the 5-position. The
furan ring is perpendicular to both the coordination plane around
platinum and the least-square plane of the five-membered ring
originated from MA.

As was found with 1a, PEt3- and PMe,Ph-coordinate
furanyl complexes 1b and 1c¢ underwent the insertion of MA into
the C—H bond at the 5-position of furanyl group to give 2b and
2¢ in 90% and 62% isolated yields, respectively (Scheme 1).
Similar insertion into 1b was also observed with tetracyano-
ethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ)
under milder conditions (room temperature) (Scheme 2), while
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Figure 2. Molecular structure of 4.

no reaction took place when 1b was treated with acrolein, methyl
vinyl ketone, and methyl acrylate.

In the reaction of 1b with TCNE (Scheme 2), complex 3
was the initial product. However, this complex is unstable in a
solution and gradually released HCN to provide complex 4
bearing a tricyanoethenyl side-chain. The complete elimination of
HCN from 3 could be performed by the chromatographic
treatment with alumina. As seen from the X-ray structure of 4
(Figure 2), the olefinic part (C(CN)=C(CN),) is nearly coplanar
with the furan ring.>

Similarly, the reaction of 1b with TCNQ initially formed an
insertion product 5 (83%), which was converted on heating into
complex 6 of blue color in quantitative yield, the color being
attributable to the long conjugated system including a quinodi-
methane structure.

2-Thienylplatinum complex (7) exhibited the reactivity
similar to the 2-furanyl complexes, leading to the insertion
products 8 and 9 and then 10 and 11 (Scheme 2).

) We next examined the reaction of 2-furanyl complex
substituted at the 5-position with methyl group (12) (Scheme 3).
In this case, insertion of TCNE into a C—H bond took place at the
3-position of furanyl group and a yellow complex (13) was
obtained in 61% yield. Treatment of 13 with alumina gave rise
to the elimination of HCN to form the vinyl derivative 14 (72%).

It has been well documented that furan derivatives are good
substrates toward the Diels—Alder addition to dienophiles. For
example, furan readily reacts with maleic anhydride at room
temperature to afford 7-oxanorbornene as the Diels—Alder
prpduct.6 However, as we described above, such a cycloadduct
was not observed in the reaction of the furan ring coordinated
with platinum in a 6-bonding manner, and the selective insertion
of typical dienophiles into the C~H bond takes place instead.” A
plausible explanation of the revised reactivity is that the steric
bulkiness of tertiary phosphine ligands prevents the face to face
interaction between the furanyl group and dienophile required for
the Diels-Alder reaction.8 Furthermore, electron-releasing
property of the platinum moiety causes increase in the electron
density of furanyl group and brings about the enhanced reactivity
toward the electrophilic substitution with electron-deficient
olefins, leading to the formal insertion of olefins.
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